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Introduction
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La statistique bayésienne

@ Branche la plus récente de la statistique (méme si historiquement la plus ancienne!)

@ Remarquable accroissement de sa popularité sur les 20 derniéres années
@ De plus en plus utilisée en ingénierie mathématique et, plus généralement, en
épidémiologie, environnement, alimentation, génétique, fiabilité, ...
» " Nombre d'articles portant sur "Bayesian statistics" pour 100000 articles publiés
dans la base de données medline (litérature biomédicale) - Période 1963-2017

1967 1977 1987 1987 2007 2017

IRSN

Sophie Ancelet (IRSN) Rappels en probal BioBayes 2019 4/79




Introduction
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Le role important des probabilités

Les 3 étapes principales de I'analyse de données bayésienne

© Proposer un modéle probabiliste (i.e., une loi de probabilité jointe) permettant de
décrire un systéme aléatoire dans lequel le hasard intervient, en vue de I'expliquer
et/ou de le prédire :

» Ingrédients de base : les variables aléatoires
» Statistique bayésienne : spécification de lois de probabilité dites a priori sur toutes les
grandeurs inconnues du systéme

@ Conditionnellement a des réalisations observées du systéme d'intérét (les données),
calculer analytiquement ou, le plus souvent, générer des valeurs aléatoires selon la
loi de probabilité dite a posteriori des quantités inconnues

> Utilisation de lois de probabilité conditionnelles !

© Evaluer le modéle : Le modéle s'ajuste t'il correctement aux données? Permet-il de
prédire des données plausibles ? Résultats sensibles aux hypothéses de modélisation ?

= Pour bien comprendre et utiliser |a statistique bayésienne, des connaissances de base
sont requises en théorie des probabilités (Chapitre 1, pages 3-69, Livre Blobayes)
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Incertitude
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Incertitude, modélisation et statistique appliquée

Lindley (2006)

"Uncertainty is everywhere and you cannot escape from it."

@ Quand le modélisateur-statisticien cherche a décrire, expliquer et/ou prédire un
systéme biologique ou physique complexe, son incertitude peut &tre importante

» Données de terrain et/ou expérimentales peu nombreuses et/ou peu informatives
» Fluctuations non contrélables du systeme étudié en I'état de connaissances actuelles
P Incertitude sur certaines quantités inconnues non observables

@ Encore trop souvent négligée ou mal prise en compte par le scientifique
» = Estimations et/ou prédictions potentiellement fausses !

@ Prendre en compte "proprement" I'incertitude dans |'analyse d'un systéme aléatoire

» = Peut conduire 3 des estimations et/ou prédictions approximativement correctes !

IRS
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Incertitude
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L’incertitude est partout! (1/3)

Lancer d’un dé... Alea Jacta est!

@ Quelle face s'affichera au terme du lancer d'un dé?
@ Lancers consécutifs = Résultats différents régis par le hasard...
» Exemple : 10 lancers ==2436161351

Mesurer le diamétre d’une pastéque

’ @ Plusieurs mesures de la méme pastéque = Résultats différents

(qualité de I'appareil de mesure, rigueur des observateurs)

@ Plusieurs mesures de pastéques issues d'un méme champ =
Résultats difféerents (variabilité du diamétre)

Temps mis pour se rendre a son travail le matin

@ 5 jours consécutifs la semaine derniére = Résultats différents
» 22 min, 35 min, 21 min, 30 min, 25 min

@ Aléa lié par exemple a |'occurrence ou non d’embouteillages,
d'incidents de voyageurs, de gréves,...
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L'incertitude est partout! (2/3)

Nombre de chromosomes dicentriques dans 1 cellule irradiée a 1 Gray

@ Plusieurs mesures pour une méme cellule = Résultats différents
(rigueur des observateurs)

@ Plusieurs mesures de cellules irradiées a la méme dose de 1 Gray
= Résultats différents (variabilité biologique et physique)

Collecter I'dge au décés de 100 mineurs d’uranium (décédés)

o Variabilité inter-individuelle de |'dge au décés : styles de vie
différents, différentes expositions professionnelles,
environnementales, médicales aux rayonnements ionisants et
autres pathogeénes, prédispositions familiales, ...

IRSN
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Notions d’aléa et d’expérience aléatoire

Qu’appelle-t-on "aléa" ?

Aléa vient du latin alea qui signifie "jeu de dés". Il peut étre vu comme la cause de la
part imprévisible des résultats d’'une expérience qui, méme dans des conditions
expérimentales supposées identiques, peut donner lieu a des résultats différents

Expérience aléatoire

Expérience plus ou moins complexe :
@ dont on ne peut prévoir par avance le résultat = Résultat incertain

@ qui peut étre répétée indéfiniment
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Incertitude
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Notions d’expérience aléatoire et d’événements (1/2)

Univers des possibles

Ensemble (fini, infini dénombrable, infini non dénombrable) de tous les résultats possibles

d'une expérience aléatoire (généralement noté Q)

Ex. Expérience aléatoire Q
1 Jet d’un dé {1,2,3,4,5,6}
5 Comptage du nombre de chromosomes dicentriques N
dans 500 cellules irradiées a 1 Gray
3 Mesure du diamétre d'une pastéque R*
4 Temps de trajet maison-travail R*
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Incertitude
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Notions d’expérience aléatoire et d’événements (2/2)

Evénément aléatoire

Assertion ou proposition logique relative au résultat d'une expérience aléatoire. On lui
associe tous les résultats (sous-ensemble de Q) de I'épreuve pour lesquels il est réalisé :

@ Evénement certain : Q / Evénement impossible : )

o Evénement simple (ou élémentaire)

Ex. Un événement aléatoire Un événement impossible
1 Obtenir 2 Obtenir 13
2 Aucun chromosome dicentrique Nombre négatif de dicentriques
3 Diameétre supérieur a 40 cm Diamétre négatif
4 Temps de trajet compris entre 5 et 10 | Temps de trajet nul
minutes

= Un événément aléatoire est un événement incertain

IRSN
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Incertitude
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Evénement incertain : besoin d'une définition plus générale ?

Mais :
@ Notre incertitude ne peut pas toujours &tre associée a un aléa
@ Un événement incertain ne peut pas toujours étre associé 3 une expérience aléatoire !

Vrai ou Faux?

@ E : "Le Portugal a une superficie inférieure ou égale a 80000 km?"

@ F: "La 5éme décimale du nombre I est 9"

@ G: "ll'y a eu entre 300 et 400 déceés par leucémie dans la cohorte actuelle des
survivants des bombardements d'Hiroshima et Nagasaki"

IRSN
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Evénement incertain : définition plus générale

Lindley, D. (2006) Understanding uncertainty John Wiley & Sons, INC, New-York
@ "An event is a statement whose truth is contemplated by a person."

@ Toute assertion ou proposition logique dont la réalisation ou I’exactitude pose
question pour un individu donné

@ Un événement est incertain pour un individu s'il ne sait pas s'il est vrai ou faux

@ Deux éventualités forment |'univers Q des possibles

» Exemple F : Q = {"La 5éme décimale du nombre I est 9", "La 5éme décimale du
nombre I n'est pas 9"}

RSN
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Comment décrire et quantifier notre incertitude ?

Jeter un dé

o Evénement incertain : "Obtenir un nombre pair" — A = {2,4,6}

A tout événement incertain, on souhaite attribuer un nombre, plus ou moins grand,
permettant de quantifier un niveau de vraisemblance ou un degré de confiance en sa
réalisation

= La probabilité est un outil mathématique possible, basée sur des
propriétés de cohérence et de rationalité

IRSN
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© Qu’est-ce qu'une probabilité ?

IRSN

Sophie Ancelet (IRSN) Rappels en probal yes 2019 16 /79




Probabilité
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La probabilité par I'exemple

Quel niveau de vraisemblance accorderiez-vous aux événements incertains ci-dessous ?

Jet d’'un dé non pipé

@ A= "Obtenir un nombre pair"

0? @ A = "Obtenir un nombre impair"

@ B= "Obtenir un nombre inférieur a 8"
@ C= "Obtenir 0"

Tirage dans une urne

Soit une urne contenant 10 boules rouges a pois noirs, 30 boules
rouges unies, 30 boules blanches a pois noirs et 30 boules blanches
unies. On tire au hasard une boule dans I'urne.

0‘.?.? @ D= "La boule tirée est blanche"
.08 e E = "La boule tirée est rouge"

@ F= "La boule tirée est blanche ou rouge"

@ G= "La boule tirée est rouge ou a pois noirs"

BioBayes 2019 17 /79
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Probabilité
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Définition axiomatique de Kolmogorov

Soit un univers Q définissant un ensemble fini d’événements élémentaires possibles ,
notés {wi,...,wn}, et C la tribu associée (cf. chapitre 1 page 12).

Axiomatique

Une probabilité P sur (2,C) est une fonction telle que :

@ Axiome 1 : A tout événement A de C est assigné un nombre réel P(A) tel que
0<PA)<1;

@ Axiome 2 : La probabilité de |'événement certain Q est donnée par :
P(Q) = >0 P(wi) = 1;

o Axiome 3 (dit régle d'additivité) : toute suite d'événements A1, Az, ..., A, deux a
deux disjoints satisfait :

P(A1 UAU...U A,,) S Z,’-’:l]P(A;). (1)

IR
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Probabilité
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Quelques regles importantes

O

@ P(A) =1 —P(A) (En particulier, P(§) = 0);

@ P(AU B) = P(A) + P(B) — P(AN B);

© Si AC B, alors : P(A) < P(B)

© P(AN C) =0 (événement impossible)

O {E, F, G}= partitionde Q = P(EUFUG) =P(E)+P(F)+P(G) =P(Q) = 1.

Q Q Q

On ne peut additionner des probabilités pour évaluer la probabilité de survenue d'un
événément ou d'un autre que si les événements sont disjoints ! IRSN
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Définitions opérationnelles de la probabilité : la vision "objective"

Etant donné un jeu d’hypothéses fixées par le modélisateur, la probabilité d'un
événement est déterminée de maniére unique

La vision classique (héritée des jeux de hasard)

@ Hypothése : Q est fini + tous les résultats élémentaires sont équiprobables
@ Le calcul des probabilités n'est qu'une affaire de dénombrement !

ez gt s . __ Nombre de résultats favorables
o Probabilité d'un événement A : P(A) = e ets possibles

La vision fréquentiste
o Q est fini, infini dénombrable ou continu
o |Idée : Répéter une expérience aléatoire a 'infini |

@ Probabilité P(A) d'un événement A : limite de la fréquence d’occurrence de A
quand le nombre d’expériences n est trés grand

@ Exemple (Jet de dé; A="Obtenir un nombre pair") :
35623432265263121 336 (20 tirages successifs)

54144

==
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Probabilité
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Définitions opérationnelles de la probabilité : la vision "subjective"

Quel degré de confiance - entre 0 et 1- accorderiez-vous a |'événement :

E : "Le Portugal a une superficie inférieure ou égale a 80000 km?" ?

Evénement incertain non répétable! = Deuxiéme conception opérationnelle

La probabilité "subjective"

Permet de quantifier le degré de confiance d'une personne, basée sur ses
connaissances et son opinion, en la réalisation de n'importe quel événement incertain
= Pas d’unicité!

Obéit aux axiomes de Kolmogorov : rationalité !

Peut varier d'une personne a l'autre et dans le temps en fonction des connaissances

Liée a la notion de pari : Combien un individu rationnel est prét a parier pour qu'un
événement incertain d'intérét se réalise ?

Concept clé de la statistique bayésienne : on peut probabiliser des événements non
répétables et tout ce qui est incertain !
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© Probabilité conditionnelle et indépendance stochastique
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Conditionnement
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La probabilité conditionnelle par I’exemple

@ Evénement A : "Ce mineur d'uranium est décédé d'un
cancer du poumon"

@ Q1 : Quelle est la probabilité de |'événement incertain A?

@ Evénement B : "Ce mineur d'uranium était fumeur"

L @ Q2 : Quelle est la probabilité de I'événement incertain A
v (sachant B)?

L'information complémentaire apportée par I'événement B a sans doute permis
d'augmenter le degré de vraisemblance de |'événement Al
= Concept de probabilité conditionnelle

IRSN
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Qu’est-ce qu’une probabilité conditionnelle ?

Sophie Ancelet (IRSN)

Définition

Soit B un événement de probabilité non nulle. On appelle
probabilité conditionnelle de I'événement A sachant B, notée
P(A|B), le rapport suivant :

P(AN B)

B(AIB) = ~5g) 2)

Remarque : Univers des possibles restreint a B!

RSN
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Exemple : Cancer du poumon/Fumeur

Table de contingence : table des probabilités jointes (et marginales)

Cancer du poumon | Pas cancer du poumon | Total,

Fumeur 0.012 0.238 0.250

Non Fumeur 0.007 0.743 0.750
Totaly 0.019 0.981 1

@ Probabilité de I'événement A :"Cancer du poumon" : P(A) = 0.019
@ Probabilité de I'événement B :"Fumeur" : P(B) = 0.250

o Calculer P(A|B)

P(AIB) = P(ANB) _0.012 _ .o

P(B)

0.250
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La clé de voite de la statistique bayésienne : la formule de Bayes

Soient deux événements A et B tels que P(A) > 0. P(A|B) et P(B|A) sont reliées par :

P(B|A) = 7]P(AIL’2\H;(B )

Interprétation bayésienne : Formule d’inversion des causes

@ Mécanisme d'inversion de relations de conditionnement probabiliste

@ Evaluer la probabilité de B|A avec B la cause et A I'effet quand on connait la
probabilité de A|B et les probabilités marginales de A et B.

Exemple : Cancer du poumon/Fumeur

Calculer la probabilité de I'événement B (Cause : "Fumeur") sachant I'événement A
(Effet : "Cancer du poumon")

0.048 x 0.250 _ 0.012

P(BIA)= 0010~ 0.010

=0.63
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La formule des probabilités totales

Soient A1, Aa,..., A, une partition de 'univers des possibles €.
Alors, pour tout événement incertain E € Q :

P(E) = ip ENA) Z]P’(E|A

= Autre expression de la formule de Bayes

P(E|A/)P(A)
> i P(EJA)P(A)

P(AJE) =

Exemple : Cancer du poumon/Fumeur

o {"Fumeur","Non fumeur"} = Partition de Q

P(A) = P(A|B)P(B) + P(A|C)P(C) = 0.048 x 0.250 + 0.009 x 0.750 = 0.019
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Notion d’'indépendence stochastique

Definition

Deux événements A et B sont indépendants si P(A|B) = P(A)

@ Le fait de savoir que B est réalisé n'apporte aucune information sur A

Propriétés (Généralisables a n événements!)

@ A indépendant de B <= B indépendant de A
@ A et B indépendants <— P(AN B) =P(A) x P(B)

o Le modélisateur suppose souvent |'indépendance (conditionnelle) des événéments
qu'il cherche & décrire ou prédire...

Pour quantifier la probabilité conjointe de deux (ou plus de deux) événements, on ne
peut multiplier leur probabilité respective qu’'aprés s’étre assuré de I’indépendancei ﬂ%“
ces événements ! )
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La formule des probabilités composées

Que faire quand on souhaite quantifier la probabilité conjointe de deux (ou plus de deux)
événements non indépendants stochastiquement ?

Formule des probabilités composées (Pour 2 événements)

Soient A; et Az deux événements tels que P(A; N Az) # 0. Alors :

P(A1 N Az) = P(A1)P(A2] Ar)

Formule généralisable a n événements de probabilité jointe non nulle.

Exemple : Cancer du poumon/Fumeur

P("Fumeur" N "Cancer poumon")
= P("Fumeur"|"Cancer poumon")P("Cancer du poumon")
= 0.63 x 0.019 = 0.012
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Attention : Dépendance stochastique ne veut pas dire causalité!

Dépendance entre la pointure des enfants et leur niveau de langage mais pas de
causalité ! Une troisiéme variable sous-jacente (appelée facteur de confusion) explique
cette dépendance probabiliste : |'age

IRSN
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© Variable aléatoire et loi de probabilité : le cas univarié
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v.a. univarié
O@0000000000000000000

Qu’est-ce qu’une variable aléatoire (v.a)?

@ Grandeur mathématique prenant différents états ou valeurs de maniére imprévisible
mais avec une certaine régularité d’occurrence

@ La régularité en question est décrite a travers une loi (ou distribution) de probabilité.
o Ingrédient de base de tout modéle probabiliste

@ Application assignant a chaque résultat élémentaire d'une expérience aléatoire une
valeur, un état ou un intervalle de valeurs avec une certaine probabilité

x; est la réalisation de la v.a. X pour |'événement élémentaire w; (seulement) :

B(X = x) = P({w € QX(w) = x) = pi

Sophie Ancelet (IRSN) Rappels en probabilité
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Variables aléatoires discrétes

@ Variables prenant un nombre fini ou infini mais dénombrable de valeurs (v.a.
discrétes valuées) ou d'états (v.a. discrétes catégorielles) possibles

Un joueur lance un dé non pipé
> X=1 si la face qui s'affiche est "un nombre pair"

P> X= 0 si la face qui s’affiche est "un nombre impair"

Loi de probabilité d’une v.a. discréte

Fonction associant a toute valeur/état possible x; (i=1,...,n) d’une v.a. X sa probabilité
pi = P(X = xi) € [0,1]

telle que 37 pi=1

X= v.a. binaire (2 états possibles {0,1})

> e P(X=1)= 05
e P(X=0)=05
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Exemple : Variables aléatoires catégorielles ordonnées

Variables discrétes prenant un nombre fini d’états possibles naturellement ordonnés
(mais non associés a un nombre)

Le choix d'une cuisson de viande rouge : cru/saignant/rosé/bien cuit )

Loi de probabilité de la v.a. choix
d’ une cuisson de viande rouge

v.a.: Choix de cuisson du steak haché dans la population francaise

Cru: 0.05 — .
Saignant : 0.10 o o]
Rosé : 0.37 o
Bien cuit : 0.28 - E s )

Ne'{nange pas de steak haché: OJR

I

(2) dffecter une probabilité a chaque état cru
(valeur comprise entre 0 et 1)
(3) S'assurer que la somme totale des

—
probabilités affectées soit égale a I! n _

(1) recenser les états élémentaires

saignant 5 bien cuit
exclusifs possibles s FOSE

34,79
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Notions d’espérance et de variance : cas d’'une v.a. discréte valuée

@ Espérance mathématique de X : E(X) = p=>""_, xipj
e Variance de X : Var(X) = 37, (xi — p)?pi

@ Ecart-type de X : 0 = 4/ Var(X)

Propriétés utiles
o Var(X) = E(X?) — E(X)?
e E(aX + b) = aE(X) + b (a et b constantes)
o Var(aX + b) = a®Var(X) (a et b constantes)

IRSN
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Quelques lois de probabilité discrétes(1/2)

Support PMF® Param E® Var(9
Bernoulli {0,1} P( =1)=p p €[0,1] p p(1-p)
Binomial | k € {0, ..., n} oo P FA—=p)" * [ neN,pel0,1] | np | np(1-p)
Poisson keN e 20 A €]0, +oo] A A

Geometric ke N* 1-p)Tp p € [0,1] % %
@ (a) -> Loi de probabilité (PMF); (b) -> Espérance; (c) -> Variance
Quel contexte d’utilisation ?

IRSN
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Quelques lois de probabilité discrétes (2/2)

Binomial Poisson
2 -lI Boa____
0 2 4 6 8 10 13 16
Geometric

e |
i .
J -.-________
1.3 5 7 9 11 14 17

Fix)
010 0.15
Pix)
0.05 0.10
1

Al

0.00 005
|
|
|

0.00

=]

0.20
1

Pix)

0.00
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Variables aléatoires continues

Variables prenant une infinité non dénombrable de valeurs possibles

(e.g., toutes les valeurs dans un intervalle borné ou non de R)
@ Le logl0 de la concentration initiale en Escherichia Coli dans un steak surgelé
@ La température minimale de croissance d'une bactérie

@ La dose cumulée annuelle de gaz radon inhalée par un mineur d'uranium dans le
cadre de son activité professionnelle

o La taille d'un individu

IRSN
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Comment leur assigner une loi de probabilité ? (1/3)

Une montre tombe en panne. La position exacte de la
grande aiguille au moment de |’ arrét est une variable
aléatoire X continue. Les positions possibles sont

I’ ensemble des angles entre 0° et 360°.1l y a un nombre
infini non dénombrable de possibilités et on veut leur
attribuer une probabilité.

Comment spécifier la loi de probabilité de X?

Une solution possible: Au lieu d’ attribuer a chaque valeur
possible une probabilité, une probabilité est associée a chaque
intervalle de valeurs!

Exemple: Pour tous réels a et b compris entre 0 et 360

b—
Pla=sX <bh)= 36(? IRSN
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Comment leur assigner une loi de probabilité ? (2/3)

@ Via la spécification de la fonction de répartition

v.a. X: Position exacte de la grande aiguille d’'une montre a I’arrét

X
[ F(x)=P()isx)=% ]
\

(1) Associer une probabilité F(x) d’étre inférieur ou
égal a x a chaque réel x

= Spécifier la fonction de répartition de X :

(fonction croissante continue a valeurs dans [0, ] tel
que la limite en -« est 0 et en + est/ )

IRSN
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Comment leur assigner une loi de probabilité ? (3/3)

@ Via la spécification de la densité de probabilité

v.a. X : Position exacte de la grande aiguille d’'une montre a I'arrét

{ Entre 0 ef 360 degrés f(x) = % ]
) (2) Associer une densité de probabilité f(x) a

(1 qeﬂntr un support de valeurs chaque point x du support.

possibles (fonction positive dont | “aire sous la courbe

est égale a 1)

@ Densité de probabilité et fonction de répartition sont deux fonctions
permettant de caractériser la loi de probabilité d” une v.a. continue X.

IRSN
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Lien entre fonction de répartition et densité de probabilité

Densité de probabilité f de la v.a. X
Rendement d’ une culture de blé en plein champ

B(60<X<80)

aire sous la courbe f sur
£4 l'intervalle [60, 80]

densiy

20 40 60 80 100 120

b

P(asXsb)=F(b)—F(a)=ff(x)dx = somme de a a b de f{x)

Densité de probabilité f(x) au point x = Dérivée de la fonction de répartition F au point x.

IRSN
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Notions d’espérance et de variance : cas d’une v.a. continue

Espérance mathématique: Soit X une v.a. continue prenant ses valeurs sur
un intervalle réel D, son espérance (si elle existe) est le nombre:

E(X)=u=(xf(x)dx
P AN

Somme —>" Intégrale Coefficients de pondération

Variance et écart-type: Soit X une v.a. continue prenant ses valeurs sur un
intervalle réel D, sa variance (si elle existe) est le nombre:

Var(X) = o’ =f(x— W)’ f(x)dx

o =Var(X)

Quelques propriétés utiles:
* Var(X)=E(X?)-E(X)?
* E(aX+b)=aE(X)+b (2 et b constantes) IRSN

*Var(aX+b)=a2Var(X) (a et b constantes)
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Caractéristiques d’une densité de probabilité (1/3)

Cas d’ une densité de probabilité symétrique

2
5 8
§ o Espérance = 50
(e} \
a 3
3 2 / N\
Q
8 3 {/ \\‘
g ° |
30 40 50 (\60 70

Mode =50
valeur la plus probable

RSN

Sophie Ancelet (IRSN) Rappels en probabilité BioBayes 2019 44 /79



v.a. univarié
0000000000000 0e000000

Caractéristiques d'une densité de probabilité (2/3)

Le a quantile (on parle aussi de
percentile) d'une loi de probabilité
est la valeur q, telle que la
probabilité qu'une v.a. X suivant
cette distribution lui soit inférieure
ou égale est égale a a.

P(X=q,)=a

density

Représentation graphique des
quantiles / percentiles a
10-30-70-90 % a partir d’'une
densité de probabilité (a) et
d’une fonction de répartition (b)

probability

(a) Densité de probabilité
de la V.A. taille d’ un individu

140 160 180 200

values

(b) Fonction de répartition
de la V.A. taille d’ un individu

140 160 180 200
: IRS

yalues
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Caractéristiques d’une densité de probabilité (3/3)

» Médiane=Quantile 50% P(X <¢q,;)=P(X =¢q,;)=0.5
A Ne pas confondre espérance et médiane!

Exemple: Cas dissymétrique vers la droite: espérance >médiane

2
5 o [
g ~ 7
5 \ Médiane = 0.51
o <
° Espérance =1
2
B 9
s © T T T \
©
0 2 4 6 8 10

RSN
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Deux écueils a éviter

* Dans le cas d’ une v.a. continue X:
* On ne sait pas attribuer une probabilité a une valeur x donnée
* La densité de probabilité en un point n’ est pas nécessairement comprise
entre 0 et | (c’ est une dérivée!)

Density

Sophie Ancelet (IRSN)

Densité de probabilité d’ une v.a. normale
d’ espérance 0 et d’ écart-type 0.1

IRSN
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Quelques densités de probabilité continues (1/3)

Support PDF®) Param E® Var(©)
_G=w)?
Normal x E€R —J=exp 202 uweER oc>0 m o2
R o o8
Beta | x¢€ [073] —Bleh) a>05>0 aip (CEELICEEEN)
Expo xER a exp A>0 N =
Gamma | x € R" %x“’lexp’ﬂx a>08>0 4 2
(In(x)— )% -2
LogN™ | x€ Rt | —1_exp 27 | ueR 0>0| &% | (e — 1)@+

Remarques :

@ (a) -> Densité de probabilité; (b) -> Espérance; (c) -> Variance
@ * -> Loi exponentielle; xx -> Loi log-normale

Quel contexte d’utilisation ?

IRSN
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Quelques densités de probabilité continues (2/3)

@ Si X ~ LogN(u,c?) alors In(X) ~ N(u,o?)
» Moyenne dite géométrique de la loi lognormale : e*
» Ecart-type dit géométrique de la loi lognormale : e”

@ Si X ~ Beta(a, b)
» a peut s'interpréter comme un nombre de succés, b comme un nombre d'échecs et
a+ b comme une taille virtuelle d’échantillon

® Choisir a=10 et b=5 fournit un état de connaissance a priori équivalent & un échantillon
virtuel de taille 15 comprenant a=10 succés

» Y = Ymin + (Ymax — ¥Ymin) X X suit une loi beta généralisée de paramétres a et b et de
support donné par l'intervalle réel [ymin, Ymax]

IRS
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Quelques densités de probabilité continues (3/3)

Beta Log-Normal
] A
[ \
/
—
0 20 40 60 80 100
Normal
X -
- N
5 o 5 10
Exponential
= z
¥ 2
—
0 10 20 30 40

ppels en probabilité

Sophie Ancelet (IRSN)

IRSN




v.a. univarié
0000000000000 0000000e

Oui, mais...

En pratique, le statisticien-modélisateur travaille avec de multiples variables
aléatoires.... Comment faire ?

RSN
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@ Variable aléatoire et loi de probabilité : le cas bivarié

IRSN
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Variables aléatoires vectorielles

* Une v.a. peut étre
vectorielle :
» masse et taille d'un
individu
» masse et 4ge d'un
individu
» sexe, IMC, 4ge d'un
individu
» concentrations de
différentes espéces de
bactéries

Sophie Ancelet (IRSN)

Poids

Paids

6 70 75 80 8 %

v.a. bivarié
0@0000000000

masse vs taille d’'un individu

10 tirages

100 tirages

Nuage de points (simulés) pour le couple de v.a.

Poids

60 65 70 75 80 85
L

1 170 175 180 185

Taile

1000 tirages

%0 170 180 190

Taille

10000 tirages

Poids

150 160 170 180 190 200

Taile

ppels en probabi

140 180 180 2

Taile
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Cas bivarié discret : Loi de probabilité jointe (1/2)

Exemple : Cancer du poumon/Fumeur

Soit (X,Y) la paire de variables aléatoires ("Statut de la maladie", "Statut fumeur")

Cancer du poumon | Pas de cancer du poumon
Fumeur 0.012 0.238
Non Fumeur 0.007 0.743

Comment définir la loi de probabilité jointe du couple (X,Y)?
@ Recenser tous les couples d'états élémentaires exclusifs possibles

@ Affecter une probabilité a chaque couple d'états (valeur comprise entre 0 et 1)

© S’assurer que la somme totale des probabilités affectées soit égale a 1!

RSN
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Cas bivarié discret : Loi de probabilité jointe (2/2)

Soit (X,Y) une paire de variables aléatoires discrétes

Loi de probabilité jointe

Fonction associant a chaque couple de valeurs possibles (x;, y;)
(i=1,...,1,j=1,...,J) de (X)Y) sa probabilité :

pi=P(X=xiNY =y;)

tel que >/, Zle pi=1

IRSN
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Cas bivarié discret : : Lois de probabilité marginales (1/2)

Exemple : Cancer du poumon/Fumeur

Soit (X,Y) la paire de variables aléatoires ("Statut de la maladie", "Statut fumeur")
Quelles sont les lois de probabilités marginales des v.a. X et Y ?

Cancer poumon | Pas cancer poumon | Marginale Y
Fumeur 0.012 0.238 0.25
Non fumeur 0.007 0.743 0.75
Marginale X 0.019 0.981 1

Soit (X,Y) une paire de variables aléatoires discrétes

Loi de probabilité marginale de X

Fonction associant a tous les états/valeurs possibles x; de X sa probabilité :
P(X =x;) = Zle P(X =x;N'Y =y;) (Loi des probabilités totales!)

Méme principe pour la loi marginale de Y IRS
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Cas bivarié discret : : Lois de probabilité marginales (2/2)

Attention ! Les lois marginales de X et Y ne suffisent pas a définir la loi jointe du couple J

(X,Y)
Cancer poumon | Pas cancer poumon | Marginale Y
Fumeur 0.012 -0.01 0.238 +0.01 0.25
Non fumeur 0.007 +0.01 0.743 -0.01 0.75
Marginale X 0.019 0.981 1

... Sauf si on ajoute I'hypothése d'indépendance : p; = pip; !

Sophie Ancelet (IRSN)

Rappels en probabilité
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Cas bivarié discret : : Lois de probabilité conditionnelles (2/2)

Exemple : Cancer du poumon/Fumeur

Soit (X,Y) la paire de variables aléatoires ("Statut de la maladie", "Statut fumeur")
Quelle est la loi de probabilité conditionnelle de Y sachant X ?

Cancer du poumon | Pas cancer du poumon
Fumeur 0.63 0.24
Non fumeur 0.37 0.76
Total 1.0 1.0

Soit (X,Y) une paire de variables aléatoires discrétes

Loi conditionnelle de X sachant Y = y;

Fonction associant a tous les états/valeurs possibles x; de X sa probabilité :

P(X=xNY=y;)
P(X=xi|Y =y) = P(Tyj)yj

Méme principe pour la loi conditionnelle de Y sachant X = x;
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La loi multinomiale - une loi de probabilité discrete multivariée

Contexte d'utilisation : n expériences aléatoires indépendantes, m résultats possibles de
probabilité p; (i € 1,...,m).

Support ni € {0,...,n} with >>7" 'nj=n
y PMF(® S P P
) Param neN* py,..pmwithY " pi=1
| E(W)™ )
Oo Var(N:)® npi(1— pi)
© Cov(N;, N;) —npipj if i #j
%i \ (a) -> Loi de probabilité jointe

°
@ (b) -> Espérance; (c) -> Variance
@ (d) -> Covariance

IRS
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Qu’en est-il dans le cas continu? (1/2)

lllustration par I'exemple. ..

Soit un couple de v.a. continues (X,Y)={ Masse ,Taille } d’un indi

Densité Densité jointe fy, du couple (X,Y):
i f,

8l v
delavayY

(1) Définir un support de valeurs possibles Dy XDy

(2) Associer une densité de probabilité jointe fy(xy)
20 4 chaque couple (xy) du support

(3) Slassurer que le volume sous la surface
représentative de fyy est égal a |

Densité conditionnelle deY sachant X=x,

(1) Zoomer sur la valeur X=x, (i.e. A tend vers 0)

Densité marginale fy
delava.X

IRSN
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Qu’en est-il dans le cas continu? (2/2)

Plus formellement...

Fonction de répartition du couple (X,Y): Fonction associant a toutes

les valeurs possibles (x,y) la probabilité:

Fy(x))=P(XsxN¥ <)

. 3°F,,
Densité jointe du couple (X,Y) (si elle existe) : S (%) = e

2
xoy
Densité marginale de X:  f,(x) =fny(x,y)dy

Densité conditionnelle deY sachant X=x,:

> _ Sy (X0, 9)
A

= Plus il y a de v.a., plus les intégrales a calculer sont complexes... .BSN
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La loi normale multivariée

Support x €R"
PDE®@ (27r)n/2;et():)1/2 e 20— (x—p)
Param u= (1, .., tn) € R", X
E®) L
Var© >

@ (a) -> Densité de probabilité jointe
o (b) -> Espérance; (c) -> Variance

@ Y : n X n matrice de variance-covariance, semi-définie positive

RSN
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La loi de Dirichlet - une loi multivariée continue

Support px € [0,1]% with 25:1 =1
Mo M, ok K

PDF() W with oy = S8 | o
Param a=(aq, ..., ax) with ax > 0 for all k
(®) ag

- ( Epk) (o =)

(o} «@ a4y — O
Var'“(px) ;i(;++1k)

@ (a) -> Densité de probabilité jointe
@ (b) -> Espérance; (c) -> Variance

o If (p1, ..., px) ~ Dirichlet(cu, ..., ax) then px ~ Beta(ou, at+ — ax)

Autres lois multivariées : Student multivariée et Wishart

IRSN
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e Simulations

IRSN
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Simulations
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Avant d’assigner une loi de probabilité, a quoi faut il réfléchir?

Au type (discréte/continu) de la grandeur d'intérét

Au support de valeurs possibles de la grandeur d'intérét
Aux valeurs centrales de la grandeur d'intérét

Aux valeurs les plus probables de la grandeur d'intérét
A la symétrie (ou pas) de la distribution

A |'épaisseur des queues

A une transformation préalable de la v.a.

RSN
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Comment simuler des réalisations d’une variable aléatoire ? (1/2)

@ La simulation de v.a. occupe une place centrale en statistique bayésienne
» Le plus souvent, on cherche a simuler des réalisations de v.a. selon :
® |a loi a posteriori des paramétres d'un modéle probabiliste (cf. Eric et Samuel)
® |a loi prédictive a posteriori des grandeurs observables (cf. Eric, Samuel, David)
@ Etre capable de simuler des réalisations d'une v.a.
<= Connaitre sa loi de probabilité

IRSN
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Comment simuler des réalisations d’une variable aléatoire ? (2/2)

o Générer des nombres aléatoires suppose d'étre capable de générer une suite de
nombres dont il est trés difficile de dériver des propriétés déterministes

@ = La plupart des logiciels de calculs modernes permettent de générer des séquences
de nombres dites pseudo-aléatoires

» Suite de nombres aléatoires "artificiels" obtenus, en pratique, a partir d'algorithmes
récursifs ayant des propriétés déterministes
xo(état initial= graine)
Xn1 = w(xn)
> La suite générée est périodique : I'objectif est d'obtenir la plus longue période !

> R, Python, SAS, Excel,...possédent leur propre générateur de nombres
pseudo-aléatoires

IRSN
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Simuler sous R : quelques commandes

Categorical

Bernoulli(7)
Binomial(N,7)
Poisson(\)
Geometric(r)
Normal(u,0)
Uniform(a,b)
Beta(a,b)
Expo(\)
Gamma(a,b)

sample(x, size, replace, prob)
rbinom(n,size=1,prob=m)
rbinom(n,size=N,prob=m)
rpois(n,lambda= )\)
rgeom(n,prob=r)
rnorm(n, mean = pu, sd = o)
runif(n,min=a, max=>b)
rbeta(n, shapel=a, shape2=b, ncp = 0)
rexp (n, rate=M\)

Multinomial

rgamma(n, shape=a, rate = b, scale = 1/rate)
rmultinom(n, size, prob)

Sophie Ancelet (IRSN)
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Exemple : La loi de Poisson

Combien de tirages aléatoires indépendants sont nécessaires pour "bien" représenter la loi
de Poisson de paramétre A\ =27

mean 1.85 mean 2.14
=2
2 P
B o g =
8 o 4 =
= =]

o 1 2 3 4 0 1 2 3 4 5 [
n= 20 n=100
mean 1.924 mean 1.9562

Density
000 030
[ENEETEE)

. i

§F =

c

&

o g
=

o 2 4 6 8 0 2 4 B 8
n= 1000 n= 5000
mean 1.9942 mean 2.00252

|

0.30

IRSN

Rappels en probal é Bayes 2019 69/79



Simulations
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Exemple : La loi Normale

Combien de tirages aléatoires indépendants sont nécessaires pour "bien" représenter la loi
Normale A/(0,1)7?

mean: 0.5 sd: 1 q97.5: 2.02 mean: -0.2 sd: 1.1 q97.5: 1.71
2 &7 = 83
B < 3 £ =
A4 = 7 4 =
=B T T T T T S T T T T
2 -1 o 1 2 3 -4 2 a H
n= 20 n=100
mean: 0 sd: 1 q97.5: 1.91 mean: 0 sd: 1 q97.5: 1.87
= = ] E-
E] = B =
c -1 c B
5 u 5 p
o o o o
= T T T T T < T T T T T
4 2 L] 2 4 -4 2 L] 2 4
n= 1000 n= 5000
mean: 0 sd: 1 q97.5: 1.95 mean: 0 sd: 1 q97.5: 1.96 l RS N
= o = ™ I
z 5 © ] ot somer ucitAE
] ; ] p
o = 7} 0O o
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e Quelques remarques importantes pour finir...

IRSN
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Remarques

Qu’est-ce qu’un modéle probabiliste ?

@ Représentation mathématiques approchée mais utile d'un systéme aléatoire
(biologique, physique,...) étant donné un état de connaissances du (des)
modélisateur(s) (cf. cours Eric et David)

@ Représentation limitée a un certain contexte mais qui doit étre suffisamment flexible
pour s'adapter a différents scenarii

> Modeéle paramétrique : un ensemble fini de paramétres inconnus 6 permettent de
décrire le systéme d'intérét. (Contexte de |'école)

IRSN
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Introduction Incertitude i i i Simulations Remarques

Comment construire un modéle probabiliste ?

@ |dentifier les variables aléatoires dont
on souhaite décrire les fluctuations

o Identifier les quantités fixes inconnues,
appelées (paramétres) et les quantités
0 supposées connues (covariables,
constantes)

X Specifier les relations de
conditionnement entre les variables

aléatoires et les paramétres
Observable

random variables

(outcomes) Y

OZ-rrmoo2
L]

@ Proposer des lois de probabilité pour
quantifier ces relations
» Exemple : Le modéle d’observations
décrit les fluctuations des variables
aléatoires observables Y sachant les
paramétres 6 et les covariables X

[RAE 2 ) |
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Remarques

Ne pas confondre modélisation probabiliste et inférence statistique !

MODELISATION PROBABILISTE
N'IMPLIQUE PAS DONNEES !

Si les paramétres 6 sont connus, le modéle
probabiliste Py permet de simuler des
) réalisations "plausibles" y,=(y1,...,yn) de

M ~ o -

5 = la v.a Y (appelée "variable réponse").

D

E

! X o (Forward) Propagation d’incertitude :

! . Quantifier/décrire I'incertitude sur les

N el — Covariates . L N

G| A e variables réponse du modéle en
(outcomes) Y propageant notamment |'incertitude

inhérente aux paramétres d'entrée du
modéle

@ Simulations Monte-Carlo, prédictions,
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Remarques

Ne pas confondre modélisation probabiliste et inférence statistique !

INFERENCE STATISTIQUE IMPLIQUE
DONNEES

= Des réalisations y,=(y1, ..., yn) de la v.a.
Y sont observées (échantillon de données).

Principal objectif : Proposer des valeurs

, N w e
s pemm— 6 possibles" et quantifier |'incertitude
R — N d'estimation associée pour les paramétres
M . , .
u| |® ! inconnus 0 (les causes) étant donné les
Al | vl données observées (conséquences)
T
1 1 —
cln N | [Gbservabie Covariates 1 Yn (}/1, o y") of Y
N G | random variables [oBserved) s
(outcomes) 3
NV V4 o (Backward) Inverse uncertainty

quantification => Démarche inverse
par rapport a la modélisation et la
simulation

@ Estimation
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Peut-on réellement définir un modéle physique qui permette de prédire
exactement quelle face de ce dé non pipé apparaitra aprés un lancer, étant donné
les conditions expérimentales initiales ?

IRSN
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Peut-on réellement définir un modéle physique qui permette de prédire
exactement quelle face de ce dé non pipé apparaitra aprés un lancer, étant donné
les conditions expérimentales initiales ?

Quand le mécanisme physique sous-jacent est trop complexe...

IRSN
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Variabilité naturelle : une premiére "interprétation" de l'incertitude

@ Incertitude inévitable et inhérente a de nombreux systémes biologiques, physiques,
environnementaux, ...

@ Diie a des fluctuations incontrélables (aléa!) du systéme et de son environnement,
en |'état actuel des connaissances

@ Aussi appelée "Incertitude par essence", "Incertitude aléatoire" ou "Incertitude
stochastique"

@ = Incertitude irréductible d’'une grandeur (observable ou non)

o Erreur de mesure (ubiquitaire en science observationnelle comme |'épidémiologie)
peut étre interprétée comme de la variabilité (due a un manque de précision de
I'appareil de mesure, a la variabilité de rigueur des observateurs. . .)

@ N'importe quelle grandeur de terrain ou expérimentale est généralement sujette a
variabilité
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Remarques

Incertitude épistémique : une deuxiéme "interprétation" de
I'incertitude

@ Incertitude associée a un manque de connaissances concernant le systéme d'intérét
(comportement/caractéristiques) et/ou son environnement

»> Aussi appelée incertitude par ignorance

@ = Incertitude réductible par |'apport de connaissances ou de données
supplémentaires

@ Incertitude associée a |'estimation d'un paramétre inconnu

@ Incertitude associée aux hypothéses de modélisation (Exemple : Forme des relations
dose-réponse en épidémiologie)

IRSN
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Merci pour votre attention !

IRSN
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