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La statistique bayésienne

Branche la plus récente de la statistique (même si historiquement la plus ancienne !)

Remarquable accroissement de sa popularité sur les 20 dernières années
De plus en plus utilisée en ingénierie mathématique et, plus généralement, en
épidémiologie, environnement, alimentation, génétique, fiabilité, ...
I ↗ Nombre d’articles portant sur "Bayesian statistics" pour 100000 articles publiés

dans la base de données medline (litérature biomédicale) - Période 1963-2017

Sophie Ancelet (IRSN) Rappels en probabilité BioBayes 2019 4 / 79



Introduction Incertitude Probabilité Conditionnement v.a. univarié v.a. bivarié Simulations Remarques

Le rôle important des probabilités

Les 3 étapes principales de l’analyse de données bayésienne

1 Proposer un modèle probabiliste (i.e., une loi de probabilité jointe) permettant de
décrire un système aléatoire dans lequel le hasard intervient, en vue de l’expliquer
et/ou de le prédire :
I Ingrédients de base : les variables aléatoires
I Statistique bayésienne : spécification de lois de probabilité dites a priori sur toutes les

grandeurs inconnues du système

2 Conditionnellement à des réalisations observées du système d’intérêt (les données),
calculer analytiquement ou, le plus souvent, générer des valeurs aléatoires selon la
loi de probabilité dite a posteriori des quantités inconnues
I Utilisation de lois de probabilité conditionnelles !

3 Evaluer le modèle : Le modèle s’ajuste t’il correctement aux données ? Permet-il de
prédire des données plausibles ? Résultats sensibles aux hypothèses de modélisation ?

⇒ Pour bien comprendre et utiliser la statistique bayésienne, des connaissances de base
sont requises en théorie des probabilités (Chapitre 1, pages 3-69, Livre Biobayes)
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Incertitude, modélisation et statistique appliquée

Lindley (2006)

"Uncertainty is everywhere and you cannot escape from it."

Quand le modélisateur-statisticien cherche à décrire, expliquer et/ou prédire un
système biologique ou physique complexe, son incertitude peut être importante
I Données de terrain et/ou expérimentales peu nombreuses et/ou peu informatives
I Fluctuations non contrôlables du système étudié en l’état de connaissances actuelles
I Incertitude sur certaines quantités inconnues non observables

Encore trop souvent négligée ou mal prise en compte par le scientifique
I ⇒ Estimations et/ou prédictions potentiellement fausses !

Prendre en compte "proprement" l’incertitude dans l’analyse d’un système aléatoire

I ⇒ Peut conduire à des estimations et/ou prédictions approximativement correctes !
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L’incertitude est partout ! (1/3)

Lancer d’un dé... Alea Jacta est !

Quelle face s’affichera au terme du lancer d’un dé ?
Lancers consécutifs ⇒ Résultats différents régis par le hasard...
I Exemple : 10 lancers ⇒ 2 4 3 6 1 6 1 3 5 1

Mesurer le diamètre d’une pastèque

Plusieurs mesures de la même pastèque ⇒ Résultats différents
(qualité de l’appareil de mesure, rigueur des observateurs)

Plusieurs mesures de pastèques issues d’un même champ ⇒
Résultats différents (variabilité du diamètre)

Temps mis pour se rendre à son travail le matin

5 jours consécutifs la semaine dernière ⇒ Résultats différents
I 22 min, 35 min, 21 min, 30 min, 25 min

Aléa lié par exemple à l’occurrence ou non d’embouteillages,
d’incidents de voyageurs, de grèves,...
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L’incertitude est partout ! (2/3)

Nombre de chromosomes dicentriques dans 1 cellule irradiée à 1 Gray

Plusieurs mesures pour une même cellule ⇒ Résultats différents
(rigueur des observateurs)

Plusieurs mesures de cellules irradiées à la même dose de 1 Gray
⇒ Résultats différents (variabilité biologique et physique)

Collecter l’âge au décès de 100 mineurs d’uranium (décédés)

Variabilité inter-individuelle de l’âge au dècès : styles de vie
différents, différentes expositions professionnelles,
environnementales, médicales aux rayonnements ionisants et
autres pathogènes, prédispositions familiales, ...
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Notions d’aléa et d’expérience aléatoire

Qu’appelle-t-on "aléa" ?

Aléa vient du latin alea qui signifie "jeu de dés". Il peut être vu comme la cause de la
part imprévisible des résultats d’une expérience qui, même dans des conditions
expérimentales supposées identiques, peut donner lieu à des résultats différents

Expérience aléatoire

Expérience plus ou moins complexe :

dont on ne peut prévoir par avance le résultat ⇒ Résultat incertain
qui peut être répétée indéfiniment
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Notions d’expérience aléatoire et d’événements (1/2)

Univers des possibles

Ensemble (fini, infini dénombrable, infini non dénombrable) de tous les résultats possibles
d’une expérience aléatoire (généralement noté Ω)

Ex. Expérience aléatoire Ω
1 Jet d’un dé {1, 2, 3, 4, 5, 6}

2 Comptage du nombre de chromosomes dicentriques Ndans 500 cellules irradiées à 1 Gray
3 Mesure du diamètre d’une pastèque R+

4 Temps de trajet maison-travail R+
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Notions d’expérience aléatoire et d’événements (2/2)

Evénément aléatoire

Assertion ou proposition logique relative au résultat d’une expérience aléatoire. On lui
associe tous les résultats (sous-ensemble de Ω) de l’épreuve pour lesquels il est réalisé :

Evénement certain : Ω / Evénement impossible : ∅
Evénement simple (ou élémentaire)

Ex. Un événement aléatoire Un événement impossible
1 Obtenir 2 Obtenir 13
2 Aucun chromosome dicentrique Nombre négatif de dicentriques
3 Diamètre supérieur à 40 cm Diamètre négatif
4 Temps de trajet compris entre 5 et 10

minutes
Temps de trajet nul

⇒ Un événément aléatoire est un événement incertain
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Evénement incertain : besoin d’une définition plus générale ?

Mais :

Notre incertitude ne peut pas toujours être associée à un aléa
Un événement incertain ne peut pas toujours être associé à une expérience aléatoire !

Vrai ou Faux ?

E : "Le Portugal a une superficie inférieure ou égale à 80000 km2"

F : "La 5ème décimale du nombre Π est 9"

G : "Il y a eu entre 300 et 400 décès par leucémie dans la cohorte actuelle des
survivants des bombardements d’Hiroshima et Nagasaki"
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Evénement incertain : définition plus générale

Lindley, D. (2006) Understanding uncertainty John Wiley & Sons, INC, New-York

"An event is a statement whose truth is contemplated by a person."

Toute assertion ou proposition logique dont la réalisation ou l’exactitude pose
question pour un individu donné

Un événement est incertain pour un individu s’il ne sait pas s’il est vrai ou faux
Deux éventualités forment l’univers Ω des possibles
I Exemple F : Ω = {"La 5ème décimale du nombre Π est 9", "La 5ème décimale du

nombre Π n’est pas 9"}
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Comment décrire et quantifier notre incertitude ?

Jeter un dé

Evénement incertain : "Obtenir un nombre pair" → A = {2, 4, 6}

A tout événement incertain, on souhaite attribuer un nombre, plus ou moins grand,
permettant de quantifier un niveau de vraisemblance ou un degré de confiance en sa
réalisation

⇒ La probabilité est un outil mathématique possible, basée sur des
propriétés de cohérence et de rationalité
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La probabilité par l’exemple

Quel niveau de vraisemblance accorderiez-vous aux événements incertains ci-dessous ?

Jet d’un dé non pipé

A= "Obtenir un nombre pair"

Ā = "Obtenir un nombre impair"

B= "Obtenir un nombre inférieur à 8"

C= "Obtenir 0"

Tirage dans une urne

Soit une urne contenant 10 boules rouges à pois noirs, 30 boules
rouges unies, 30 boules blanches à pois noirs et 30 boules blanches
unies. On tire au hasard une boule dans l’urne.

D= "La boule tirée est blanche"

E = "La boule tirée est rouge"

F= "La boule tirée est blanche ou rouge"

G= "La boule tirée est rouge ou à pois noirs"
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Définition axiomatique de Kolmogorov

Soit un univers Ω définissant un ensemble fini d’événements élémentaires possibles ,
notés {ω1, . . . , ωn}, et C la tribu associée (cf. chapitre 1 page 12).

Axiomatique

Une probabilité P sur (Ω, C) est une fonction telle que :

Axiome 1 : A tout événement A de C est assigné un nombre réel P(A) tel que
0 ≤ P(A) ≤ 1 ;

Axiome 2 : La probabilité de l’événement certain Ω est donnée par :
P(Ω) =

∑n
i=1 P(ωi ) = 1 ;

Axiome 3 (dit règle d’additivité) : toute suite d’événements A1,A2, . . . ,An deux à
deux disjoints satisfait :

P(A1 ∪ A2 ∪ . . . ∪ An) = Σn
i=1P(Ai ). (1)
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Quelques règles importantes

1 P(A) = 1− P(A) (En particulier, P(∅) = 0) ;
2 P(A ∪ B) = P(A) + P(B)− P(A ∩ B) ;
3 Si A ⊂ B, alors : P(A) ≤ P(B)

4 P(A ∩ C) = 0 (événement impossible)
5 {E , F , G}= partition de Ω⇒ P(E ∪ F ∪ G) = P(E) + P(F ) + P(G) = P(Ω) = 1.

On ne peut additionner des probabilités pour évaluer la probabilité de survenue d’un
événément ou d’un autre que si les événements sont disjoints !
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Définitions opérationnelles de la probabilité : la vision "objective"

Etant donné un jeu d’hypothèses fixées par le modélisateur, la probabilité d’un
événement est déterminée de manière unique

La vision classique (héritée des jeux de hasard)

Hypothèse : Ω est fini + tous les résultats élémentaires sont équiprobables

Le calcul des probabilités n’est qu’une affaire de dénombrement !

Probabilité d’un événement A : P(A) = Nombre de résultats favorables
Nombre de résultats possibles

La vision fréquentiste

Ω est fini, infini dénombrable ou continu
Idée : Répéter une expérience aléatoire à l’infini !

Probabilité P(A) d’un événement A : limite de la fréquence d’occurrence de A
quand le nombre d’expériences n est très grand

Exemple (Jet de dé ; A="Obtenir un nombre pair") :
3 5 6 2 3 4 3 2 2 6 5 2 6 3 1 2 1 3 3 6 (20 tirages successifs)

P20(A) =
5 + 1 + 4

20
= 0.5

Sophie Ancelet (IRSN) Rappels en probabilité BioBayes 2019 20 / 79



Introduction Incertitude Probabilité Conditionnement v.a. univarié v.a. bivarié Simulations Remarques

Définitions opérationnelles de la probabilité : la vision "subjective"

Quel degré de confiance - entre 0 et 1- accorderiez-vous à l’événement :

E : "Le Portugal a une superficie inférieure ou égale à 80000 km2" ?

Evénement incertain non répétable ! ⇒ Deuxième conception opérationnelle

La probabilité "subjective"

Permet de quantifier le degré de confiance d’une personne, basée sur ses
connaissances et son opinion, en la réalisation de n’importe quel événement incertain
⇒ Pas d’unicité !
Obéit aux axiomes de Kolmogorov : rationalité !

Peut varier d’une personne à l’autre et dans le temps en fonction des connaissances

Liée à la notion de pari : Combien un individu rationnel est prêt à parier pour qu’un
événement incertain d’intérêt se réalise ?

Concept clé de la statistique bayésienne : on peut probabiliser des événements non
répétables et tout ce qui est incertain !

Sophie Ancelet (IRSN) Rappels en probabilité BioBayes 2019 21 / 79



Introduction Incertitude Probabilité Conditionnement v.a. univarié v.a. bivarié Simulations Remarques

1 Introduction

2 L’incertitude

3 Qu’est-ce qu’une probabilité ?

4 Probabilité conditionnelle et indépendance stochastique

5 Variable aléatoire et loi de probabilité : le cas univarié

6 Variable aléatoire et loi de probabilité : le cas bivarié

7 Simulations

8 Quelques remarques importantes pour finir...

Sophie Ancelet (IRSN) Rappels en probabilité BioBayes 2019 22 / 79



Introduction Incertitude Probabilité Conditionnement v.a. univarié v.a. bivarié Simulations Remarques

La probabilité conditionnelle par l’exemple

Evénement A : "Ce mineur d’uranium est décédé d’un
cancer du poumon"

Q1 : Quelle est la probabilité de l’événement incertain A ?

Evénement B : "Ce mineur d’uranium était fumeur"

Q2 : Quelle est la probabilité de l’événement incertain A
(sachant B) ?

L’information complémentaire apportée par l’événement B a sans doute permis
d’augmenter le degré de vraisemblance de l’événement A !
⇒ Concept de probabilité conditionnelle
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Qu’est-ce qu’une probabilité conditionnelle ?

Définition

Soit B un événement de probabilité non nulle. On appelle
probabilité conditionnelle de l’événement A sachant B, notée
P(A|B), le rapport suivant :

P(A|B) =
P(A ∩ B)

P(B)
. (2)

Remarque : Univers des possibles restreint à B !

Sophie Ancelet (IRSN) Rappels en probabilité BioBayes 2019 24 / 79



Introduction Incertitude Probabilité Conditionnement v.a. univarié v.a. bivarié Simulations Remarques

Exemple : Cancer du poumon/Fumeur

Table de contingence : table des probabilités jointes (et marginales)

Cancer du poumon Pas cancer du poumon Total2
Fumeur 0.012 0.238 0.250

Non Fumeur 0.007 0.743 0.750
Total1 0.019 0.981 1

Probabilité de l’événement A :"Cancer du poumon" : P(A) = 0.019

Probabilité de l’événement B :"Fumeur" : P(B) = 0.250

Calculer P(A|B)

P(A|B) =
P(A ∩ B)

P(B)
=

0.012
0.250

= 0.048
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La clé de voûte de la statistique bayésienne : la formule de Bayes

Soient deux événements A et B tels que P(A) > 0. P(A|B) et P(B|A) sont reliées par :

P(B|A) =
P(A|B)P(B)

P(A)

Interprétation bayésienne : Formule d’inversion des causes

Mécanisme d’inversion de relations de conditionnement probabiliste

Evaluer la probabilité de B|A avec B la cause et A l’effet quand on connaît la
probabilité de A|B et les probabilités marginales de A et B.

Exemple : Cancer du poumon/Fumeur

Calculer la probabilité de l’événement B (Cause : "Fumeur") sachant l’événement A
(Effet : "Cancer du poumon")

P(B|A) =
0.048× 0.250

0.019
=

0.012
0.019

= 0.63
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La formule des probabilités totales

Soient A1, A2,..., An une partition de l’univers des possibles Ω.
Alors, pour tout événement incertain E ∈ Ω :

P(E) =
n∑

i=1

P(E ∩ Ai ) =
n∑

i=1

P(E |Ai )P(Ai )

⇒ Autre expression de la formule de Bayes

P(Aj |E) =
P(E |Aj)P(Aj)∑n
i=1 P(E |Ai )P(Ai )

Exemple : Cancer du poumon/Fumeur

{"Fumeur","Non fumeur"} = Partition de Ω

P(A) = P(A|B)P(B) + P(A|C)P(C) = 0.048× 0.250 + 0.009× 0.750 = 0.019
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Notion d’indépendence stochastique

Definition

Deux événements A et B sont indépendants si P(A|B) = P(A)

Le fait de savoir que B est réalisé n’apporte aucune information sur A

Propriétés (Généralisables à n événements !)

A indépendant de B ⇐⇒ B indépendant de A

A et B indépendants ⇐⇒ P(A ∩ B) = P(A)× P(B)

Le modélisateur suppose souvent l’indépendance (conditionnelle) des événéments
qu’il cherche à décrire ou prédire...

Pour quantifier la probabilité conjointe de deux (ou plus de deux) événements, on ne
peut multiplier leur probabilité respective qu’après s’être assuré de l’indépendance de
ces événements !
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La formule des probabilités composées

Que faire quand on souhaite quantifier la probabilité conjointe de deux (ou plus de deux)
événements non indépendants stochastiquement ?

Formule des probabilités composées (Pour 2 événements)

Soient A1 et A2 deux événements tels que P(A1 ∩ A2) 6= 0. Alors :

P(A1 ∩ A2) = P(A1)P(A2|A1)

Formule généralisable à n événements de probabilité jointe non nulle.

Exemple : Cancer du poumon/Fumeur

P("Fumeur" ∩ "Cancer poumon")

= P("Fumeur"|"Cancer poumon")P("Cancer du poumon")

= 0.63× 0.019 = 0.012
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Attention : Dépendance stochastique ne veut pas dire causalité !

Exemple

Dépendance entre la pointure des enfants et leur niveau de langage mais pas de
causalité ! Une troisième variable sous-jacente (appelée facteur de confusion) explique
cette dépendance probabiliste : l’âge
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Qu’est-ce qu’une variable aléatoire (v.a) ?

Grandeur mathématique prenant différents états ou valeurs de manière imprévisible
mais avec une certaine régularité d’occurrence
La régularité en question est décrite à travers une loi (ou distribution) de probabilité.
Ingrédient de base de tout modèle probabiliste

Application assignant à chaque résultat élémentaire d’une expérience aléatoire une
valeur, un état ou un intervalle de valeurs avec une certaine probabilité

xi est la réalisation de la v.a. X pour l’événement élémentaire ωi (seulement) :

P(X = xi ) = P({ω ∈ Ω|X (ω) = xi ) = pi
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Variables aléatoires discrètes

Variables prenant un nombre fini ou infini mais dénombrable de valeurs (v.a.
discrètes valuées) ou d’états (v.a. discrètes catégorielles) possibles

Un joueur lance un dé non pipé
I X=1 si la face qui s’affiche est "un nombre pair"
I X= 0 si la face qui s’affiche est "un nombre impair"

Loi de probabilité d’une v.a. discrète

Fonction associant à toute valeur/état possible xi (i=1,. . .,n) d’une v.a. X sa probabilité

pi = P(X = xi ) ∈ [0, 1]

telle que
∑n

i=1 pi = 1

X= v.a. binaire (2 états possibles {0, 1})

P(X=1)= 0.5

P(X= 0)= 0.5
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Exemple : Variables aléatoires catégorielles ordonnées

Variables discrètes prenant un nombre fini d’états possibles naturellement ordonnés
(mais non associés à un nombre)

Le choix d’une cuisson de viande rouge : cru/saignant/rosé/bien cuit
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Notions d’espérance et de variance : cas d’une v.a. discrète valuée

Espérance mathématique de X : E(X ) = µ =
∑n

i=1 xipi

Variance de X : Var(X ) =
∑n

i=1(xi − µ)2pi

Ecart-type de X : σ =
√

Var(X )

Propriétés utiles

Var(X ) = E(X 2)− E(X )2

E(aX + b) = aE(X ) + b (a et b constantes)

Var(aX + b) = a2Var(X ) (a et b constantes)
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Quelques lois de probabilité discrètes(1/2)

Support PMF(a) Param E(b) Var(c)

Bernoulli {0, 1} P(X = 1) = p p ∈ [0, 1] p p(1-p)
Binomial k ∈ {0, ..., n} n!

k!(n−k)!
pk(1− p)n−k n ∈ N, p ∈ [0, 1] np np(1-p)

Poisson k ∈ N e−λ λ
k

k!
λ ∈]0,+∞[ λ λ

Geometric k ∈ N∗ (1− p)k−1p p ∈ [0, 1] 1
p

1−p
p2

(a) -> Loi de probabilité (PMF) ; (b) -> Espérance ; (c) -> Variance

Quel contexte d’utilisation ?
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Quelques lois de probabilité discrètes (2/2)
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Variables aléatoires continues

Variables prenant une infinité non dénombrable de valeurs possibles
(e.g., toutes les valeurs dans un intervalle borné ou non de R)

Le log10 de la concentration initiale en Escherichia Coli dans un steak surgelé

La température minimale de croissance d’une bactérie

La dose cumulée annuelle de gaz radon inhalée par un mineur d’uranium dans le
cadre de son activité professionnelle

La taille d’un individu
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Comment leur assigner une loi de probabilité ? (1/3)
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Comment leur assigner une loi de probabilité ? (2/3)
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Comment leur assigner une loi de probabilité ? (3/3)
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Lien entre fonction de répartition et densité de probabilité
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Notions d’espérance et de variance : cas d’une v.a. continue
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Caractéristiques d’une densité de probabilité (1/3)
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Caractéristiques d’une densité de probabilité (2/3)
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Caractéristiques d’une densité de probabilité (3/3)
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Deux écueils à éviter
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Quelques densités de probabilité continues (1/3)

Support PDF(a) Param E(b) Var(c)

Normal x ∈ R 1
σ
√

2π
exp−

(x−µ)2

2σ2 µ ∈ R, σ > 0 µ σ2

Beta x ∈ [0, 1] xα−1(1−x)β−1

B(α,β)
α > 0, β > 0 α

α+β
αβ

(α+β)2(α+β+1)

Expo∗ x ∈ R+ λexp−λx λ > 0 1
λ

1
λ2

Gamma x ∈ R+ βα

Γ(α)
xα−1exp−βx α > 0, β > 0 α

β
α
β2

LogN∗∗ x ∈ R+ 1
xσ
√

2π
exp−

(ln(x)−µ)2

2σ2 µ ∈ R, σ > 0 eµ+σ
2
2 (eσ

2
− 1)e(2µ+σ2)

Remarques :

(a) -> Densité de probabilité ; (b) -> Espérance ; (c) -> Variance

∗ -> Loi exponentielle ; ∗∗ -> Loi log-normale

Quel contexte d’utilisation ?
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Quelques densités de probabilité continues (2/3)

Si X ∼ LogN(µ, σ2) alors ln(X ) ∼ N(µ, σ2)
I Moyenne dite géométrique de la loi lognormale : eµ
I Ecart-type dit géométrique de la loi lognormale : eσ

Si X ∼ Beta(a, b)
I a peut s’interpréter comme un nombre de succès, b comme un nombre d’échecs et

a + b comme une taille virtuelle d’échantillon
• Choisir a=10 et b=5 fournit un état de connaissance a priori équivalent à un échantillon

virtuel de taille 15 comprenant a=10 succès
I Y = ymin + (ymax − ymin)× X suit une loi beta généralisée de paramètres a et b et de

support donné par l’intervalle réel [ymin, ymax ]
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Quelques densités de probabilité continues (3/3)

Sophie Ancelet (IRSN) Rappels en probabilité BioBayes 2019 50 / 79



Introduction Incertitude Probabilité Conditionnement v.a. univarié v.a. bivarié Simulations Remarques

Oui, mais...

En pratique, le statisticien-modélisateur travaille avec de multiples variables
aléatoires.... Comment faire ?
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1 Introduction

2 L’incertitude

3 Qu’est-ce qu’une probabilité ?

4 Probabilité conditionnelle et indépendance stochastique

5 Variable aléatoire et loi de probabilité : le cas univarié

6 Variable aléatoire et loi de probabilité : le cas bivarié

7 Simulations

8 Quelques remarques importantes pour finir...
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Variables aléatoires vectorielles
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Cas bivarié discret : Loi de probabilité jointe (1/2)

Exemple : Cancer du poumon/Fumeur

Soit (X,Y) la paire de variables aléatoires ("Statut de la maladie", "Statut fumeur")

Cancer du poumon Pas de cancer du poumon
Fumeur 0.012 0.238

Non Fumeur 0.007 0.743

Comment définir la loi de probabilité jointe du couple (X,Y) ?
1 Recenser tous les couples d’états élémentaires exclusifs possibles
2 Affecter une probabilité à chaque couple d’états (valeur comprise entre 0 et 1)
3 S’assurer que la somme totale des probabilités affectées soit égale à 1 !
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Cas bivarié discret : Loi de probabilité jointe (2/2)

Soit (X,Y) une paire de variables aléatoires discrètes

Loi de probabilité jointe

Fonction associant à chaque couple de valeurs possibles (xi , yj)
(i = 1, . . . , I , j = 1, . . . , J) de (X,Y) sa probabilité :

pij = P(X = xi ∩ Y = yj)

tel que
∑I

i=1
∑J

j=1 pij = 1
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Cas bivarié discret : : Lois de probabilité marginales (1/2)

Exemple : Cancer du poumon/Fumeur

Soit (X,Y) la paire de variables aléatoires ("Statut de la maladie", "Statut fumeur")
Quelles sont les lois de probabilités marginales des v.a. X et Y ?

Cancer poumon Pas cancer poumon Marginale Y
Fumeur 0.012 0.238 0.25

Non fumeur 0.007 0.743 0.75
Marginale X 0.019 0.981 1

Soit (X,Y) une paire de variables aléatoires discrètes

Loi de probabilité marginale de X

Fonction associant à tous les états/valeurs possibles xi de X sa probabilité :
P(X = xi ) =

∑J
j=1 P(X = xi ∩ Y = yj) (Loi des probabilités totales !)

Même principe pour la loi marginale de Y
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Cas bivarié discret : : Lois de probabilité marginales (2/2)

Attention ! Les lois marginales de X et Y ne suffisent pas à définir la loi jointe du couple
(X,Y)

Cancer poumon Pas cancer poumon Marginale Y
Fumeur 0.012 -0.01 0.238 +0.01 0.25

Non fumeur 0.007 +0.01 0.743 -0.01 0.75
Marginale X 0.019 0.981 1

... Sauf si on ajoute l’hypothèse d’indépendance : pij = pipj !
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Cas bivarié discret : : Lois de probabilité conditionnelles (2/2)

Exemple : Cancer du poumon/Fumeur

Soit (X,Y) la paire de variables aléatoires ("Statut de la maladie", "Statut fumeur")
Quelle est la loi de probabilité conditionnelle de Y sachant X ?

Cancer du poumon Pas cancer du poumon
Fumeur 0.63 0.24

Non fumeur 0.37 0.76
Total 1.0 1.0

Soit (X,Y) une paire de variables aléatoires discrètes

Loi conditionnelle de X sachant Y = yj

Fonction associant à tous les états/valeurs possibles xi de X sa probabilité :
P(X = xi |Y = yj) =

P(X=xi∩Y=yj )

P(Y=yj )

Même principe pour la loi conditionnelle de Y sachant X = xi
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La loi multinomiale - une loi de probabilité discrète multivariée

Contexte d’utilisation : n expériences aléatoires indépendantes, m résultats possibles de
probabilité pi (i ∈ 1, ...,m).

Support ni ∈ {0, ..., n} with
∑m

i=1 ni = n

PMF(a) n!
n1!...nm!

pn1
1 ...p

nm
m

Param n ∈ N∗, p1, ..., pm with
∑m

i=1 pi = 1
E(Ni )

(b) npi
Var(Ni )

(c) npi (1− pi )

Cov(Ni ,Nj)
(d) −npipj if i 6= j

(a) -> Loi de probabilité jointe

(b) -> Espérance ; (c) -> Variance

(d) -> Covariance

Sophie Ancelet (IRSN) Rappels en probabilité BioBayes 2019 59 / 79



Introduction Incertitude Probabilité Conditionnement v.a. univarié v.a. bivarié Simulations Remarques

Qu’en est-il dans le cas continu ? (1/2)
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Qu’en est-il dans le cas continu ? (2/2)

⇒ Plus il y a de v.a., plus les intégrales à calculer sont complexes...
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La loi normale multivariée

Support x ∈ Rn

PDF(a) 1
(2π)n/2det(Σ)1/2

e−
1
2 (x−µ)T Σ−1(x−µ)

Param µ= (µ1, ..., µn) ∈ Rn, Σ

E (b) µ

Var (c) Σ

(a) -> Densité de probabilité jointe

(b) -> Espérance ; (c) -> Variance

Σ : n × n matrice de variance-covariance, semi-définie positive
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La loi de Dirichlet - une loi multivariée continue

Support pk ∈ [0, 1]K with
∑K

k=1 pk = 1

PDF(a) Γ(α+)
∏K

k=1 p
αk−1
k∏K

k=1 Γ(αk )
with α+ =

∑K
k=1 αk

Param α=(α1, ..., αK ) with αk > 0 for all k
E (b)(pk) αk

α+

Var (c)(pk) αk (α+−αk )

α2
+(α++1)

(a) -> Densité de probabilité jointe

(b) -> Espérance ; (c) -> Variance

If (p1, ..., pK ) ∼ Dirichlet(α1, ..., αK ) then pk ∼ Beta(αk , α+ − αk)

Autres lois multivariées : Student multivariée et Wishart
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Avant d’assigner une loi de probabilité, à quoi faut il réfléchir ?

Au type (discrète/continu) de la grandeur d’intérêt

Au support de valeurs possibles de la grandeur d’intérêt

Aux valeurs centrales de la grandeur d’intérêt

Aux valeurs les plus probables de la grandeur d’intérêt

A la symétrie (ou pas) de la distribution

A l’épaisseur des queues

A une transformation préalable de la v.a.
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Comment simuler des réalisations d’une variable aléatoire ? (1/2)

La simulation de v.a. occupe une place centrale en statistique bayésienne
I Le plus souvent, on cherche à simuler des réalisations de v.a. selon :

• la loi a posteriori des paramètres d’un modèle probabiliste (cf. Eric et Samuel)
• la loi prédictive a posteriori des grandeurs observables (cf. Eric, Samuel, David)

Etre capable de simuler des réalisations d’une v.a.
⇐⇒ Connaître sa loi de probabilité
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Comment simuler des réalisations d’une variable aléatoire ? (2/2)

Générer des nombres aléatoires suppose d’être capable de générer une suite de
nombres dont il est très difficile de dériver des propriétés déterministes
⇒ La plupart des logiciels de calculs modernes permettent de générer des séquences
de nombres dites pseudo-aléatoires
I Suite de nombres aléatoires "artificiels" obtenus, en pratique, à partir d’algorithmes

récursifs ayant des propriétés déterministes

x0(état initial= graine)
xn+1 = w(xn)

I La suite générée est périodique : l’objectif est d’obtenir la plus longue période !
I R, Python, SAS, Excel,...possèdent leur propre générateur de nombres

pseudo-aléatoires
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Simuler sous R : quelques commandes

Categorical sample(x, size, replace, prob)
Bernoulli(π) rbinom(n,size=1,prob=π)

Binomial(N,π) rbinom(n,size=N,prob=π)
Poisson(λ) rpois(n,lambda= λ)

Geometric(π) rgeom(n,prob=π)
Normal(µ,σ) rnorm(n, mean = µ, sd = σ)
Uniform(a,b) runif(n,min=a, max=b)
Beta(a,b) rbeta(n, shape1=a, shape2=b, ncp = 0)
Expo(λ) rexp (n, rate=λ)

Gamma(a,b) rgamma(n, shape=a, rate = b, scale = 1/rate)
Multinomial rmultinom(n, size, prob)
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Exemple : La loi de Poisson

Combien de tirages aléatoires indépendants sont nécessaires pour "bien" représenter la loi
de Poisson de paramètre λ = 2 ?
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Exemple : La loi Normale

Combien de tirages aléatoires indépendants sont nécessaires pour "bien" représenter la loi
Normale N (0, 1) ?
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Qu’est-ce qu’un modèle probabiliste ?

Représentation mathématiques approchée mais utile d’un système aléatoire
(biologique, physique,...) étant donné un état de connaissances du (des)
modélisateur(s) (cf. cours Eric et David)
Représentation limitée à un certain contexte mais qui doit être suffisamment flexible
pour s’adapter à différents scenarii
I Modèle paramétrique : un ensemble fini de paramètres inconnus θ permettent de

décrire le système d’intérêt. (Contexte de l’école)
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Comment construire un modèle probabiliste ?

Identifier les variables aléatoires dont
on souhaite décrire les fluctuations

Identifier les quantités fixes inconnues,
appelées (paramètres) et les quantités
supposées connues (covariables,
constantes)

Specifier les relations de
conditionnement entre les variables
aléatoires et les paramètres
Proposer des lois de probabilité pour
quantifier ces relations
I Exemple : Le modèle d’observations

décrit les fluctuations des variables
aléatoires observables Y sachant les
paramètres θ et les covariables X
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Ne pas confondre modélisation probabiliste et inférence statistique !

MODELISATION PROBABILISTE
N’IMPLIQUE PAS DONNÉES !

Si les paramètres θ sont connus, le modèle
probabiliste Pθ permet de simuler des
réalisations "plausibles" yn=(y1, ..., yn) de
la v.a Y (appelée "variable réponse").

(Forward) Propagation d’incertitude :
Quantifier/décrire l’incertitude sur les
variables réponse du modèle en
propageant notamment l’incertitude
inhérente aux paramètres d’entrée du
modèle

Simulations Monte-Carlo, prédictions,
...
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Ne pas confondre modélisation probabiliste et inférence statistique !

Y 

θ 
Parameters 
(unknown) 

Observable 
random variables 
(outcomes) 

X 

Covariates 
(observed) 

M 
O 
D 
E 
L 
L 
I 
N 
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S 
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A 
T 
I 
O
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I 
M 
U 
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A 
T 
I 
O 
N 

INFERENCE STATISTIQUE IMPLIQUE
DONNEES

⇒ Des réalisations yn=(y1, ..., yn) de la v.a.
Y sont observées (échantillon de données).

Principal objectif : Proposer des valeurs
"possibles" et quantifier l’incertitude
d’estimation associée pour les paramètres
inconnus θ (les causes) étant donné les
données observées (conséquences)
yn=(y1, ..., yn) of Y

(Backward) Inverse uncertainty
quantification => Démarche inverse
par rapport à la modélisation et la
simulation

Estimation

Sophie Ancelet (IRSN) Rappels en probabilité BioBayes 2019 75 / 79



Introduction Incertitude Probabilité Conditionnement v.a. univarié v.a. bivarié Simulations Remarques

Peut-on réellement définir un modèle physique qui permette de prédire
exactement quelle face de ce dé non pipé apparaîtra après un lancer, étant donné
les conditions expérimentales initiales ?

Quand le mécanisme physique sous-jacent est trop complexe...
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Quand le mécanisme physique sous-jacent est trop complexe...

Sophie Ancelet (IRSN) Rappels en probabilité BioBayes 2019 76 / 79



Introduction Incertitude Probabilité Conditionnement v.a. univarié v.a. bivarié Simulations Remarques

Variabilité naturelle : une première "interprétation" de l’incertitude

Incertitude inévitable et inhérente à de nombreux systèmes biologiques, physiques,
environnementaux,...

Dûe à des fluctuations incontrôlables (aléa !) du système et de son environnement,
en l’état actuel des connaissances

Aussi appelée "Incertitude par essence", "Incertitude aléatoire" ou "Incertitude
stochastique"

⇒ Incertitude irréductible d’une grandeur (observable ou non)

Exemples

Erreur de mesure (ubiquitaire en science observationnelle comme l’épidémiologie)
peut être interprétée comme de la variabilité (due à un manque de précision de
l’appareil de mesure, à la variabilité de rigueur des observateurs. . . )

N’importe quelle grandeur de terrain ou expérimentale est généralement sujette à
variabilité
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Incertitude épistémique : une deuxième "interprétation" de
l’incertitude

Incertitude associée à un manque de connaissances concernant le système d’intérêt
(comportement/caractéristiques) et/ou son environnement
I Aussi appelée incertitude par ignorance

⇒ Incertitude réductible par l’apport de connaissances ou de données
supplémentaires

Exemples

Incertitude associée à l’estimation d’un paramètre inconnu

Incertitude associée aux hypothèses de modélisation (Exemple : Forme des relations
dose-réponse en épidémiologie)
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Merci pour votre attention !
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