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1. Exemple

Essai à la ferme réalisé en 2015 pour comparer 14 populations de blé,
comprenant 17 parcelles.

Essai réalisé en collaboration avec l’équipe “Diversité, Evolution et
Adaptation des Populations” de l’UMR “Génétique Quantitative et
Évolution-Le Moulon” dans le cadre d’un projet sur le développement de
l’agriculture biologique pour le blé.

Plan de l’essai :
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Variable poids de mille grains (tkw) en g.

Histogram of tkw
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L’observation yij pour la population i et la répétition j est modélisée par :

yij = αi + εij , εij ∼ N
(
0, σ2

ε

)
.

Il y a 15 paramètres et 17 données.
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Anova

Analysis of Variance Table
Df Sum Sq Mean Sq F value Pr(>F)

germplasm 14 36691 2620.82 223.73 0.0004325 ***
Residuals 3 35 11.71
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Estimate Std. Error t value Pr(>|t|)
germplasm 10 58.410 3.423 17.066 0.000438 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.423 on 3 degrees of freedom
Multiple R-squared: 0.999, Adjusted R-squared: 0.9946
F-statistic: 223.7 on 14 and 3 DF, p-value: 0.0004325

2.5 % 97.5 %
germplasm 10 47.51768 69.30232

Quelles lois a priori utiliser pour αi et σε ?
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2. Loi a priori informative

Loi a priori informative : loi qui cherche à prendre en compte
l’information a priori dont on dispose sur les paramètres.

On utilise les résultats de l’anova : α10 ∼ N
(
58.410, 3.4232

)
.

Mean SD
alpha[10] 58.398365 2.0805987
sigma 2.649136 0.5259157
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On peut construire une loi a priori informative en utilisant des données
venant d’autres expériences, de la littérature etc.

Histogramme des α̂i dans d’autres essais et loi a priori de α10 :
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Loi a priori normale pour α : αi ∼ N
(
µ0, σ

2
α0
)
, i = 1, . . . , 14.

Moyenne des α̂i ≈ 45 ⇒ µ0 = 45. Ecart-type des α̂i ≈ 6 ⇒ σα0 = 6.
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Histogramme des σ̂ε dans d’autres essais et loi a priori de σε :
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Loi a priori gamma pour σ−2
ε : σ−2

ε ∼ G (1, 4).

7/17



Loi prédictive a priori de y10 1 :

p(y10 1) =

∫
p(y10 1|α10, σε)p(α10)p(σε)dα10dσε.

Histogramme de tkw dans d’autres essais et loi prédictive a priori de
y10 1 :

Histogram of tkw
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Lois de α10 :
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Résumés de la loi a posteriori :

2.5% 25% 50% 75% 97.5%
alpha[10] 48.152562 53.36665 55.55667 57.411518 60.893645
sigma 1.860142 2.55137 3.10284 3.841427 5.898445

L’intervalle de crédibilité de α10 est moins grand que celui de l’anova.
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3. Loi a priori “non informative”

Loi a priori “non informative” : loi qui cherche à apporter le moins
d’information a priori possible sur les paramètres.

Loi a priori normale pour α|σε : αi |σε ∼ N
(
µ0,

σ2
ε

r0

)
, i = 1, . . . , 14.

Loi a posteriori de α|σε :

αi |σε, y ∼ N
(
µ′i ,

σ2
ε

r ′i

)
, i = 1, . . . , 14,

µ′i =
r0µ0 + riyi•

r0 + ri
, r ′i = r0 + ri ,

ri est le nombre de répétitions de la population i ,
yi• est la moyenne des observations pour la population i .

Loi a priori conjuguée avec la vraisemblance : la loi a posteriori appartient
à la même famille de lois que la loi a priori.
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La loi a priori apporte la même information qu’un jeu de données
comprenant r0 répétitions de la population i et tel que α̂i = µ0.

La loi a priori a peu d’influence sur les résultats si les répétitions sont
nombreuses.

Loi “non informative” pour α : r0 = 10−6.

Lois de α10 et loi prédictive a priori de y10 1 :
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La loi a priori de α10 a une grande variance, elle est vague.
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Résumés de la loi a posteriori :

2.5% 25% 50% 75% 97.5%
alpha[10] 55.235266 57.380575 58.400574 59.413355 61.524943
sigma 1.144239 1.377826 1.536445 1.726912 2.240271

Il est en général plus difficile de construire une loi a priori “non
informative” qu’une loi informative.

Dans cette école, on se limite à des lois vagues.

Une analyse de sensibilité à la loi a priori peut aider à détecter des
problèmes.
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Quand r0 → 0, la loi a priori de α|σ tend vers la loi uniforme sur R.

Loi a priori impropre : loi a priori dont l’intégrale ne vaut pas 1 mais
+∞ ; elle n’est pas une véritable loi de probabilité.

Dans ce cas, il faut vérifier si la loi a posteriori est propre.

Quand r0 → 0, la loi a posteriori de α|σ est propre :

αi |σε, y ∼ N
(
α′i ,

σ2
ε

r ′i

)
, i = 1, . . . , 14,

α′i = yi•, r ′i = ri .

On peut donc utiliser la loi a priori uniforme pour α|σε.
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4. Loi a priori hiérarchique

Loi a priori hiérarchique : loi a priori qui a plusieurs niveaux.

Loi a priori de α à 2 niveaux :

Niveau 1 : yij ∼ N
(
αi , σ

2
ε

)
,

Niveau 2 : αi ∼ N
(
µ, σ2

α

)
, σ−2

ε ∼ G (1, 4) ,
Niveau 3 : µ ∼ N

(
0, σ2

µ

)
, σ−2

α ∼ G (γ, γ) ,
σµ → +∞, γ → 0.

µ et σα sont des paramètres inconnus du niveau 2, appelés
hyperparamètres.

On ne peut pas utiliser cette loi car la loi a posteriori est impropre.
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Loi a priori de α à 2 niveaux :

Niveau 1 : yij ∼ N
(
αi , σ

2
ε

)
,

Niveau 2 : αi ∼ N
(
µ, σ2

α

)
, σ−2

ε ∼ G (1, 4) ,
Niveau 3 : µ ∼ N

(
45, 102) , σα ∼ N+

(
0, 102) .

Histogramme de tkw dans d’autres essais et loi prédictive a priori de
y10 1 :
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Résumés de la loi a posteriori :

2.5% 25% 50% 75% 97.5%
alpha[10] 45.097221 52.442597 55.387277 57.598797 61.534847
mu 42.097967 44.703527 45.897282 47.163301 49.796280
sigma 1.839705 2.610050 3.278263 4.293542 7.188869
sigma.alpha 1.723310 5.089808 6.239840 7.462387 10.520161

L’estimation de α10 s’est rapprochée de µ : on dit qu’elle est rétrécie.

L’intervalle de crédibilité de α10 est moins grand que celui de l’anova.
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